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Numerical Simulations of Magnetic

Reversal in Layered Spring Magnets

by

J. Samuel Jiang, Hans G. Kaper, and Gary K. Leaf

Abstract. This report summarizes the results of numerical investigations of magnetic reversal

in layered spring magnets. A one-dimensional model is used of a �lm consisting of several atomic

layers of soft material on top of several atomic layers of hard material. Each atomic layer is taken

to be uniformly magnetized, and spatial inhomogeneities within an atomic layer are neglected. The

state of such a system is described by a chain of magnetic spin vectors. Each spin vector behaves

like a spinning top driven locally by the e�ective magnetic �eld and subject to damping (Landau{

Lifshitz{Gilbert equation). A numerical integration scheme for the LLG equation is presented that

is unconditionally stable and preserves the magnitude of the magnetization vector at all times. The

results of numerical investigations for a bilayer in a rotating in-plane magnetic �eld show hysteresis

with a basic period of 2� at moderate �elds and hysteresis with a basic period of � (or any multiple

thereof) at strong �elds.

1 Introduction

Exchange-spring coupled magnets (spring magnets, for short) hold signi�cant promise for

applications in information recording and storage devices. Spring magnets consist of nano-

dispersed hard and soft magnetic phases that are coupled at the interfaces. (In a hard

material, the magnetic moment tends to be aligned with the easy axis; in a soft material,

it is more or less free to align itself with the local magnetic �eld.) The superior magnetic

properties of a spring magnet stem from the fact that the soft phase enhances the mag-

netization of the composite [1, 2, 3, 4, 5, 6]. Since the performance of a spring magnet is

determined by the stability of the soft phase against magnetization reversal, it is important

to identify the factors a�ecting the reversal process.

Thin �lms provide an interesting class of simple models for which one can perform

both physical and computational experiments. A spring-magnet structure can be realized

by interleaving hard and soft magnetic layers, and because the layered structure results

in variations of the magnetic properties predominantly along the normal direction, the

structure of such spring magnets is essentially one dimensional.

In this report we investigate magnetic reversal in a hard/soft bilayer|a layer of soft

material on top of a layer of hard material|with strong coupling at the interface. The

hard and soft layers both consist of several atomic layers; each atomic layer is treated as
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uniformly magnetized, and spatial inhomogeneities within an atomic layer are neglected.

The state of the bilayer is thus described by a chain of spins in the normal direction, where

each spin represents the magnetic moment of an atomic layer.

The dynamics of a magnetic moment are entirely local. A magnetic moment is like

a spinning top, which is driven by the e�ective magnetic �eld and subject to damping.

The relevant equation was �rst formulated by Landau and Lifshitz [7] and later given in

an equivalent form by Gilbert [8]. The local e�ective �eld is derived variationally from an

energy functional [9].

A hard material is characterized by a large anisotropy energy, which enhances the

tendency of the spins to line up with the easy axis. In the soft material, on the other hand,

the spins are more or less free to align themselves with the magnetic �eld. If the direction

of the applied �eld deviates from the easy axis of the hard material, and the hard and soft

layers are tightly coupled at the interface as in a spring magnet, the chain of spins will twist

through the soft material to approach the direction of the applied �eld. The direction of

this twist (the chirality) depends on the angle between the direction of the applied �eld

and the easy axis of the hard material. It can be positive (the in-plane angle of the spin

with the easy axis increases as one goes from the hard to the soft layers) or negative (the

in-plane angle of the spin with the easy axis decreases as one goes from the hard to the soft

layers). Transitions from one chirality to the other may occur at critical directions of the

applied �eld. A change of chirality leads to hysteresis.

In this report we investigate magnetic reversal in a hard/soft bilayer induced by the

rotation of an in-plane magnetic �eld. The results of numerical simulations for a Sm-Co/Fe

bilayer show di�erent behavior depending on the strength of the applied �eld.

� As long as the �eld is weak, the magnetization is reversible, and no hysteresis occurs.

� A su�ciently strong �eld pulls the magnetic spins in the soft layers in its wake but

leaves the spins in (most of) the hard layers �xed along the easy axis. When the di-

rection of the applied �eld deviates signi�cantly from the easy direction, a transition

occurs in the soft layers that changes the chirality of the chain of spins. Rotational

hysteresis with a basic period of 360 degrees results. The degree of hysteresis varies

with the �eld strength, and there is the possibility of a discontinuity because of a struc-

tural change in the chain of spins. This structural change shows some characteristics

of a phase transition.

� A very strong �eld pulls the entire chain of magnetic spins, in the soft as well as the

hard layers, in its wake. But since the spins in the hard layers are essentially con�ned

to the easy axis, either in the positive or in the negative direction, the spins in the

hard layers follow intermittently, ipping only when the direction of the applied �eld

deviates su�ciently from the easy direction. The spins in the soft layers follow the

direction of the applied �eld more closely as one goes up through the soft layers, but
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still discontinously when the spins in the hard layers ip their orientation. Only the

spin in the top layer rotates continuously. The chirality of the chain of spins does

not change; however, since the chain of spins behaves more like a spring than a sti�

rod, it still experiences rotational hysteresis. The period of this hysteresis can be any

multiple of 180 degrees.

The numerical results explain the experimental observation of hysteresis in some torque

measurements [10]. They also agree qualitatively with some magneto-optical measurements

of the magnetization angle [11]. However, they di�er at the quantitative level; in particular,

the width of the hysteresis loops is found to be signi�cantly greater in the simulations than

in the experiments, except at weak �elds. The discrepancy is due to the mathematical

model: A one-dimensional model is a single-domain model, which does not allow for the

nucleation and motion of nanodomains. Hence, the demagnetization energy is seriously

overestimated. In simulations of realistic spring magnets, it is therefore necessary to use

multidimensional models. A summary of the data presented in the present report is given

in [12].

Following is an outline of the report. In Section 2 we describe the computational model

and the approximation procedure. In Section 3, we present the results of the numerical sim-

ulations. In Section 4, we summarize our conclusions. We use the Gaussian C.G.S. system

of units.

2 Computational Model

A layered spring magnet is a multilayer structure, which consists of Nh atomic layers of a

hard magnetic material adjacent to Ns atomic layers of a soft magnetic material,

Hard layers : i 2 Ih = f1; : : : ; Nhg;

Soft layers : i 2 Is = fNh + 1; : : : ; Nh +Nsg:

We put I = Ih [ Is and N = Nh +Ns. The atomic layers are homogeneous, and variations

occur only in the direction normal to the layers. We assume for convenience that the atomic

layers are equally thick; their thickness d is of the order of angstroms (1 �A equals 1 � 10�8

cm).

We adopt a right-handed Cartesian (x; y; z) coordinate system, where the x and y axes

are in the plane of an atomic layer, the x axis coincides with the easy axis of the hard

material, and the z axis is in the direction normal to the layers; ex, ey , and ez are the unit

vectors in the direction of increasing x, y, and z, respectively. In a polar (�; �) coordinate

system, � is the out-of-plane angle and � the in-plane angle measured counterclockwise from

the positive x axis.
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The state of the bilayer is completely described by the set of magnetic moments,

M = fM i : i 2 Ig: (2.1)

EachM i is a vector-valued function of time t, with components Mi;x, Mi;y, and Mi;z . The

magnitude Mi ofM i is the magnetization (emu/cm3), the unit vectormi =M i=Mi is the

magnetic spin in the ith layer. The magnetization is constant at all times and equal to the

local saturation magnetization,

M i(t) =Mimi(t); with Mi =

(
Mh if i 2 Ih;

Ms if i 2 Is:
(2.2)

Here, Mh and Ms are the values of the saturation magnetization for the hard and soft

material, respectively. Each magnetic spin can be speci�ed in terms of its Cartesian or

polar components,

mi = (mi;x; mi;y; mi;z)
t = (cos�i cos �i; cos�i sin �i; sin�i)

t: (2.3)

Thus, �i is the in-plane angle ofmi with the easy axis of the hard material (measured from

the positive x direction), �i the out-of-plane angle of mi.

2.1 Dynamics of the Magnetic Moment

In the one-dimensional model under consideration, the dynamics of the magnetic moment

are entirely local and are those of a spinning top subject to damping. The force driving

M i is the local magnetic �eld Hi. The equation of motion is the Landau{Lifshitz{Gilbert

(LLG) equation,

@M i

@t
= �(M i �H i) +

g

Mi

�
M i �

@M i

@t

�
; i 2 I: (2.4)

Here,  is the gyromagnetic constant (sec�1oersted�1) and g a (dimensionless) damping

coe�cient. The magnitude of H i is speci�ed in oersted (1 oersted = 1 emu/cm3). Note

that the LLG equation yields a magnetic moment whose magnitude is constant in time. An

equivalent form of the LLG equation is

@M i

@t
= �c

�
(M i �Hi) +

g

Mi
M i � (M i �Hi)

�
; i 2 I; (2.5)

where c = =(1+ g2).

Suppose that the system is subject to an externally applied magnetic �eld Ha, which

is uniform and constant in time. Then the local magnetic �eld Hi is computed at any time

from the expression

Hi =Ha +
1

Mi
[Ji;i+1(mi+1 �mi)� Ji;i�1(mi �mi�1)]� 2

Ki

Mi
ex � (mi � ex)

� 4�Mi(mi � ez)ez ; i 2 I; (2.6)
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where

m0 =m1; mN+1 =mN : (2.7)

The last identities are the discrete analogs of the Neumann boundary condition at the free

surfaces (no surface anisotropy);m0 and mN+1 may be viewed as the magnetic spins in a

virtual layer of hard material at the bottom (index i = 0) and a virtual layer of soft material

at the top (index i = N + 1).

The coupling coe�cient J (erg/cm3) has the same value between layers of the same

material; similarly, the anisotropy coe�cient K (erg/cm3) is constant within the same

material,

Ji;i+1 =

8><
>:

Jh; i = 1; : : : ; Nh � 1;

Jhs; i = Nh;

Js; i = Nh + 1; : : : ; N;

Ki =

(
Kh; i = 1; : : : ; Nh;

Ks; i = Nh + 1; : : : ; N:
(2.8)

The actual values of these material parameters depend on the temperature; Ks � Kh in

all practical cases.

The expression (2.6) is an approximation for the expression

H i =Ha �
�F

�M i
; (2.9)

where F is the free energy density and �=�M i its Fr�echet derivative with respect to M i.

The free energy is the sum of the exchange energy, the anisotropy energy, and the demag-

netization energy,

F [M ] =

Z



"
1

2
A(z)

����@m@z
����
2

+K(z) jm� exj
2 +

1

2
(4�)(M � ez)

2

#
: (2.10)

Here, 
 is the z interval occupied by the entire multilayered structure and A is the exchange

coupling coe�cient (erg/cm), which is related to J (J = Ad�2). The demagnetization tensor

for a layer has only one element, Dzz ; 4� is its value for an in�nitely thin at ellipsoid [13].

Note that 1 emu equals 1 erg/oersted and 1 oersted equals 1 emu/cm3, so F is expressed

in units of erg/cm3.

2.2 Integration of the LLG Equation

The LLG equation maintains a constant magnetization, so the only quantity that changes in

the course of time is the direction of the magnetic moment. We therefore begin by rewriting

the LLG equation in terms of m. As the equation is entirely local to each layer, we drop

the index i temporarily. We use the prime 0 to denote di�erentiation with respect to time.
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Let H be the strength of the magnetic �eld (oersted), and let h = H=H be the unit

vector in the direction of H,

H(t) = H(t)h(t): (2.11)

Then the LLG equation is

m
0 = �cH [(m� h) + gm� (m� h)] : (2.12)

We decompose the equation by means of the projection operators P and Q,

Pu = (u � h)h; Qu = u� Pu = h � (u� h); u 2 R3
: (2.13)

Equation (2.12) is equivalent to the two equations

Pm
0 = �cHP [(m� h) + gm� (m� h)] ; (2.14)

Qm
0 = �cHQ [(m� h) + gm� (m� h)] : (2.15)

Notice the identities

P (m� h) = 0; P [m� (m� h)] = (m �Qm)h = �[1� (Pm � Pm)2]h; (2.16)

Q(m� h) = �JQm; Q[m� (m� h)] = (m � h)Qm; (2.17)

where J is the square root of the negative identity in R2,

I =

 
1 0

0 1

!
; J =

 
0 �1

1 0

!
; J

2 = �I: (2.18)

Hence, we can recast Eqs. (2.14) and (2.15) in the form

Pm
0 = cgH [1� (Pm � Pm)2]h; (2.19)

Qm0 = cH [J � g(m � h)I ]Qm: (2.20)

Suppose that the direction of H does not change on an interval (t; t+�t),

h(s) = h(t); s 2 (t; t+�t): (2.21)

Then Pm0 = (Pm)0 and Qm0 = (Qm)0 on (t; t+ �t), so Eqs. (2.19) and (2.20) reduce to

a coupled system of di�erential equations for the scalar u = (Pm � h) in R and the vector

v = Qm in R2,

u
0 = cgH(1� u

2) on (t; t+�t): (2.22)

v
0 = cH(J � guI)v on (t; t+�t): (2.23)

From these equations we conclude that the critical states are u = 1, v = 0 (m = h,

magnetic moment parallel to the magnetic �eld) and u = �1, v = 0 (m = �h, magnetic
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moment antiparallel to the magnetic �eld). The former is linearly stable, the latter unstable

under in�nitesimal perturbations.

We now turn to the integration of Eqs. (2.22) and (2.23). The former is independent

of v and can be integrated immediately. If not only the direction but also the magnitude

of H is constant on (t; t+ �t),

H(s) =H(t); s 2 (t; t+�t); (2.24)

we �nd

u(s) =
u(t) cosh(cgH(t)(s� t)) + sinh(cgH(t)(s� t))

cosh(cgH(t)(s� t)) + u(t) sinh(cgH(t)(s� t))
; s 2 (t; t+ �t): (2.25)

Next, we turn to Eq. (2.23). We replace the constant cgH by u0=(1� u2) (from Eq. (2.22))

and use the identity �uu0=(1�u2) = (ln(1�u2)1=2)0 to convert the equation into a di�erential

equation for the vector w = (1� u2)�1=2v,

w
0 = cHJw on (t; t+ �t): (2.26)

This equation can be integrated,

w(s) = ecH(t)(s�t)J
w(t)

= [cos(cH(t)(s� t))I + sin(cH(t)(s� t))J ]w(t); s 2 (t; t+�t): (2.27)

From the expression (2.25) we obtain

(1� u(s)2)1=2 =
(1� u(t)2)1=2

cosh(cgH(t)(s� t)) + u(t) sinh(cgH(t)(s� t))
; (2.28)

so

v(s) =
cos(cH(t)(s� t))I + sin(cH(t)(s� t))J

cosh(cgH(t)(s� t)) + u(t) sinh(cgH(t)(s� t))
v(t); s 2 (t; t+�t): (2.29)

These results motivate the choice of the integration scheme for Eq. (2.12),

mn+1 =
(mn � hn) cosh(cgHn�t) + sinh(cgHn�t)

cosh(cgHn�t) + (mn � hn) sinh(cgHn�t)
hn

+
cos(cHn�t)I + sin(cHn�t)J

cosh(cgHn�t) + (mn � hn) sinh(cgHn�t)
hn � (mn � hn); (2.30)

where mn+1 =m(tn+1), mn =m(tn), hn = h(tn), Hn = H(tn), and �t = tn+1 � tn.

The algorithm (2.30) is unconditionally stable for all values of �t. Of course, the

quality of the approximation su�ers as �t increases. However, the algorithm explicitly

displays the relationship between the size of �t and the local error in the time integration.
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The rate of precession of m around the polar axis is governed by H , the magnitude of the

local e�ective �eld: in one time step, m precesses through an angle H�t. Therefore, by

properly choosing �t, we can resolve the fastest precessional motion in a given number of

time steps per period. Since H varies over the course of a simulation, we have a natural

and direct means to adjust the size of �t to the current dynamical state, while maintaining

the resolution of the precessional motion.

Other algorithms for the numerical integration of the LLG equation have been proposed

recently by Nigam [14] and E and Wang [15].

2.3 Computing Equilibrium Con�gurations

The analysis in the preceding section suggests the following algorithm for �nding the equi-

librium spin con�guration in a bilayer. Starting from a given equilibrium stateM = fM i :

i 2 Ig at time t0, one uses Eq. (2.6) to compute the magnetic �eld H i in each layer at t0.

Having found Hi(t0) for all i 2 I , one advances in time to t1 = t0 +�t and uses Eqs. (2.2)

and (2.30) to compute M at t1. If �t is su�ciently small, M(t1) is a close approximation

of the state of the system at time t1. One continues this process, �nding approximations of

the state of the system at successive times tn = t0 + n�t, n = 1; 2; : : : , until equilibrium is

reached.

3 Numerical Results

The algorithm of the preceding section has been used to study hysteresis phenomena in

hard/soft bilayers that are driven by an applied �eld Ha that is uniform, constant in time,

and parallel to the planes of the atomic layers. The expression for the e�ective magnetic

�eld, Eq. (2.6), decomposes into an in-plane component,

Hi � ez =Ha � ez +
1

Mi
[Ji;i+1(mi+1 �mi)� Ji;i�1(mi �mi�1)]� ez

� 2
Ki

Mi
(mi � ey)ex; i 2 I; (3.1)

and an out-of-plane component,

Hi � ez =
1

Mi

[Ji;i+1(mi+1 �mi)� Ji;i�1(mi �mi�1)] � ez

� 2
Ki

Mi
mi � ez � 4�Mimi � ez ; i 2 I: (3.2)

When the system is in an equilibrium state, the e�ective magnetic �eld is parallel (or

antiparallel) to the magnetic spin; see Section 2.2. Hence, each Hi is a multiple ofmi, and
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Eq. (3.2) reduces to a homogeneous system of linear algebraic equations for the set of scalars

fmi � ez : i 2 Ig. In general, this system admits only the trivial solution, so the magnetic

moments lie in the plane of the atomic layers. In the notation of Eq. (2.3), �i = 0 for all

i 2 I at equilibrium, and the only relevant variables are the in-plane angles f�i : i 2 Ig. (Of

course, the magnetic spin may have an out-of-plane component during the transient phase

of the computation.)

In the numerical simulations we focus on the in-plane angle of the magnetic spin at

equilibrium and investigate its behavior as a function of the strength Ha and the direction

�a of the applied �eld,

Ha = Haha; ha = (cos �a; sin �a; 0)
t
: (3.3)

The following computations refer to a bilayer con�guration consisting of Nh = 115 atomic

layers of Sm-Co (a hard material) and Ns = 100 atomic layers of Fe (a soft material).

A di�erent con�guration is used in Section 3.3, where we make a comparison with some

magneto-optical measurements. Table 1 gives the values of the material parameters A,

K, and M , as well as the values of the coupling coe�cient J (J = Ad�2, d = 2 �A). The

gyromagnetic constant is  = 1:1052 � 108=(2�) sec�1oersted�1. In all cases, the damping

coe�cient g = 0:5.

Table 1: Numerical values of the parameters.

A (erg/cm) J (erg/cm3) K (erg/cm3) M (emu/cm3)

Fe 2:8 � 10�6 7:0 � 109 1:0 � 103 1,700

Interface 1:8 � 10�6 4:5 � 109 { {
Sm-Co 1:2 � 10�6 3:0 � 109 5:0 � 107 550

3.1 Rotational Hysteresis

The case Ha = 4800 oersteds is typical, at least for moderate values of Ha (see Section 3.2).

In a �rst set of simulations, we computed the equilibrium state as a function of the

angle �a, �rst increasing �a from 0 to 2�, then decreasing �a from 2� to 0. At each value of

�a, we started the computation from the equilibrium state for the preceding value of �a.

The simulations show that the equilibrium spin con�gurations for increasing �a (0 <

�a < 2�) and decreasing �a (2� > �a > 0) are mirror images of each other. Figure 1 shows

two sets of magnetic spin con�gurations at equilibrium for various values of �a, one set (left)

as �a increases from 0 to 2�, the other set (right) as �a decreases from 2� to 0. The heavy

dots represent the endpoints of the magnetic spin (a unit vector) in each layer for various

angles �a; the values of �a, in degrees, are indicated near the top layer. (The dots merge

into a solid line where the magnetic spins in adjacent layers are close.)
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Figure 1: Equilibrium spin con�gurations; Ha = 4800 oersteds. Left: �a increasing. Right:

�a decreasing.

Notice that the chirality (\handedness") of the chain of magnetic spins changes sud-

denly from positive at �a = 301:5 to negative at �a = 301:6 degrees and from negative at

�a = 58:5 to positive at �a = 58:4 degrees. Figure 2 zooms in on this phenomenon. It shows

the chain of spins at �a = 301:5 and �a = 301:6 degrees from a di�erent viewpoint.
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Figure 2: Equilibrium spin con�guration; Ha = 4800 oersteds.

Figure 3 shows the change of chirality in a di�erent way. Here, we have plotted the

in-plane angle �i against the layer index i for increasing values of �a. (The graphs for

decreasing values of �a are obtained by symmetry.)

Notice that, in all cases, the spin is �xed along the easy axis (�i = 0) in most of the

hard layers; it begins to deviate from the easy axis only as one approaches the interface

(i = 115). The �rst derivative is discontinuous at the interface, and the tangent is vertical

in the top layer (i = 215). First, the graph changes continuously (but not monotonically)
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Figure 3: In-plane angle �i vs. i; Ha = 4800 oersteds; (a) �a = 45, (b) �a = 90, (c) �a = 135,

(d) �a = 180, (e) �a = 225, (f) �a = 270, (g) �a = 301:5, (h) �a = 301:6, (i) �a = 315 degrees.

as �a increases from 0 to 301.5 degrees, while maintaining its right handedness (�i increases

with i). Then it changes discontinously at �a = 301:6 degrees: it becomes left handed (�i
decreases with i). Finally, it changes continuously again as �a increases further, maintaining

its left handedness, to return to the original graph (�i = 0 for all i 2 I) as �a reaches

360 degrees.
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Figure 4: In-plane angle �i vs. �a; Ha = 4800 oersteds; i = 95; 115; 135; 155; 175; 195; 215.

The change in chirality is irreversible and induces rotational hysteresis in the chain of

magnetic spins. The in-plane angle of each spin vector traverses a di�erent trajectory as the

applied �eld rotates 360 degrees in the forward and backward direction. The hysteresis loop

has the same shape, and particularly the same width, in all layers. Its vertical dimension
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contracts gradually as one descends through the soft layers, to disappear entirely in the

hard layers somewhat below the interface; see Fig. 4.

3.2 Two Types of Rotational Hysteresis

We now vary the strength of the applied �eld, Ha. We recall (Fig. 4) that, as �a increases

from 0, the chirality changes discontinuously from positive to negative as the direction of

the applied �eld deviates su�ciently from the easy axis. We denote the critical value of the

angle �a by �c (�c = 301:5 : : : at Ha = 4800 oersteds.) Figure 5 shows the variation of �c
with Ha.
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Figure 5: Variation of �c with Ha.

We discuss the di�erent types of behavior in detail. (The remarks in parentheses give

numerical values obtained for the standard con�guration.)

3.2.1 0 < Ha < Hc1

The magnetization process is reversible as long as Ha is su�ciently small, 0 < Ha < Hc1

(Hc1 � 800 oersteds). Figure 6 shows the in-plane angle of the magnetic spin in the top

layer, �N , vs. �a; �N oscillates, the graph for increasing values of �a coincides with the

graph for decreasing values of �a, and only the direction in which the graph is traversed is

reversed. The behavior of �i in other layers is similar.
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Figure 6: No hysteresis below Hc1. In-plane angle �N (top layer) vs. �a, (a) Ha = 200,

(b) Ha = 400, (c) Ha = 600, (d) Ha = 800 oersteds.

3.2.2 Hc1 � Ha < Hc2

The �rst critical value of Ha, Hc1, is reached when the slope of the graph of �N (and of �i
for all i) vs. �a in Fig. 6 becomes vertical. The graph of �c vs. Ha (Fig. 5) is continuous and

has a zero slope at Ha = Hc1. From here on, the magnetization process is irreversible. The

spins show rotational hysteresis of the type discussed in the preceding section, with a basic

period of 2�. The graph of �i vs. �a for increasing values of �a separates from the graph for

decreasing values of �a. The separation is symmetric around �a = �.

The width of the hysteresis loop increases monotonically from 0 at Ha = Hc1 to some

value less than 2� (� 286 degrees) at the next critical value, Ha = Hc2. Figure 7 shows the

in-plane angle in the top layer as a function of �a, for various values of Ha. (The vertical

scale di�ers from Fig. 6.)

3.2.3 Hc2 � Ha < Hc3

At Ha = Hc2 (Hc2 � 6798 oersteds), the angle �c shows a pronounced discontinuity (�c
drops from 323.1 degrees at Ha = 6798 oersteds to 259.9 degrees at Ha = 6799 oersteds)

and the hysteresis loop suddenly narrows. Beyond Hc2, it continues to narrow, but it

does not collapse entirely. At the next critical value, Ha = Hc3, �c is still greater than �

(�c � 197:0 degrees); see Fig. 8.

The cause of the discontinuity at Ha = Hc2 can be seen in Fig. 9, where we have
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Figure 7: Rotational hysteresis in (Hc1; Hc2). In-plane angle �N (top layer) vs. �a, (a) Ha =

1000, (b) Ha = 3000, (c) Ha = 5000, (d) Ha = 6797 oersteds.

plotted �i against i; cf. Fig. 3. (The bottom 80 layers of hard material, where � does not

deviate noticeably from 0, are not included in this �gure.) At Hc2, the chain of spins has

been stretched to its widest extent; it can no longer support the (almost 280-degree) span

in the top layer, sti�ens suddenly, and becomes more like a rigid rod. The rod-like behavior

is apparent from the increasing range where the chain is almost vertical. The sti�ening of

the chain of magnetic spins continues as Ha increases to Hc3.

The structural change in the chain of spins has some of the characteristics of a phase

transition. For example, we observe a signi�cant increase in the equilibration time (by two

orders of magnitude) as �a approaches �c; see Fig. 10. Also, the increasing size of the rigid

domain near Hc2 is reminiscent of a diverging correlation length.

3.2.4 Ha � Hc3

At Ha = Hc3 (Hc3 between 10,200 and 10,300 oersteds), the magnetic spin con�guration

begins to show an entirely new behavior. So far, the spins have always maintained a �xed

orientation in the hard layers: along the easy axis (apart from small deviations near the

interface) and in the positive x direction. As the applied �eld rotated, the orientation of

the magnetic spins changed only in the soft layers (and in a few hard layers just below the

interface). The result was a change of the chirality of the chain of magnetic spins, which

led to rotational hysteresis with a basic period 2�. At Ha = Hc3, the �eld energy becomes

su�ciently large for the �rst time to change the orientation of the spin in the hard layers to

the negative x direction and thus move the chain of magnetic spins over its entire length.
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Figure 8: Rotational hysteresis in (Hc2; Hc3). In-plane angle �N (top layer) vs. �a, (a) Ha =

6799, (b) Ha = 8000, (c) Ha = 9200, (d) Ha = 10; 200 oersteds.
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Figure 9: In-plane angle �i vs. i; (a) Ha = 1000, (b) Ha = 2000, (c) Ha = 3000,

(d) Ha = 5000, (e) Ha = 6000, (f) Ha = 7000, (g) Ha = 8000, (h) Ha = 9000,

(i) Ha = 10; 000 oersteds. Right branches: �a just below �c, left branches: �a just above �c.
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Figure 10: Equilibration time near �c; Ha = 6797 oersteds, �c = 323:0 degrees.

The reason for the existence of a critical value Hc3 is apparent from Fig. 9. As Ha

increases from Hc2 to Hc3, the graph of �i vs. i steepens in the upper layers, while it gets

stretched more and more in the lower soft layers and the upper hard layers. (Notice the

pivot point, a little below the 130th layer.) At Hc3, the tension in the upper hard layers can

no longer be supported, and the spin chain relaxes by shifting in its entirety by 180 degrees

in the hard layers.

The magnetization reversal develops as follows. As �a �rst increases from 0, the mag-

netic spin in the hard layers is �xed in the positive x direction; �i increases continuously

from 0 as one goes up through the soft layers to match �a, the direction of the applied �eld,

in the top layer. When �a passes a critical value �c say, a little beyond �, the spins in the

hard layers ip to the negative x direction, to remain there until �a reaches the value �c+�.

The exact value of �c depends on Ha and decreases to � as Ha increases beyond Hc3. The

spin again rotates continuously with a positive chirality as one goes up through the soft

layers, to match �a in the top layer.

This scenario is repeated every time the di�erence �a � �c passes a multiple of �. As

a result, the chain of spins maintains a positive chirality, and each �i keeps increasing with

�a. The jump of �i, which is a full 180 degrees in (most of) the hard layers, diminishes as

one goes up through the layers, to vanish eventually in the top layer, where �N changes

continuously with �a; see Fig. 11 (left).

When the direction of the applied �eld is reversed, the magnetic spin �rst retraces its

steps, maintaining its positive chirality, until �a � �c passes the �rst multiple of �. At that

point, the chirality changes from positive to negative, to remain negative from there on. The

same scenario as when �a increases (a ip of the spins in the hard layers every time �a � �c

passes a multiple of �) is repeated, but now in the opposite direction; see Fig. 11 (right).

As a result, � keeps decreasing with �a until it is back to 0.
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Figure 11: Equilibrium spin con�gurations; Ha = 10; 400 oersteds. Left: �a increasing,

right: �a decreasing.

The preservation of chirality during a full-circle rotation of the applied �eld is illustrated

in Figs. 12 and 13.

Figure 12 gives �i vs. i for increasing values of �a. (The graphs for decreasing values

of �a are obtained by symmetry.) The value Ha = 10; 400 oersteds is just above Hc3. This

�gure should be compared with Fig. 3 for the standard case, Ha = 4800 oersteds.
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Figure 12: In-plane angle �i vs. i; Ha = 10; 400 oersteds; (a) �a = 16, (b) �a = 61,

(c) �a = 106, (d) �a = 151, (e) �a = 195, (f) �a = 196, (g) �a = 241, (h) �a = 286,

(i) �a = 331, (j) �a = 375 degrees.

Figure 13 shows three graphs: one graph (c) is along the diagonal; the other two (a

and b) are symmetric with respect to the diagonal. The outer graph (a) shows the variation

of the in-plane angle of the magnetic spin, �i, with �a for i = 85 (hard layer). The part
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Figure 13: In-plane angle �i vs. �a;Ha = 10; 400 oersteds; (a) i = 85 (hard layer), (b) i = 115

(interface), (c) i = 215 (top layer).

below the diagonal is traversed in the upward direction as �a increases from 0; the part

above the diagonal is traversed in the downward direction as �a decreases from 360 degrees.

The spin is oriented in either the positive or the negative x direction. The �rst transition

going up occurs at �c � 196 degrees, the �rst transition coming down occurs at 2���c , and

subsequent transitions occur at every multiple of � beyond �c. The center graph (c) shows

�i for i = 215 (top layer). The orientation of this spin varies continuously with �a and is

perfectly reversible. Finally, the middle graph (b) shows �i for i = 115 (at the interface).

Here, the spin rotates continuously until it jumps. The jumps occur at �c (2�� �c) and at

every multiple of � beyond �c. The graphs for the remaining layers �ll the space between

the ones drawn in the �gure. The main point to observe is that the graphs for �a increasing

always increase and stay below the diagonal, while those for �a decreasing always decrease

and stay above the diagonal. Hence, chirality is preserved in both cases.

When the direction of �a is reversed, �i crosses the diagonal as soon as �a � �c is

a multiple of �; after crossing, it remains on the part of the graph situated on the newly

reached side of the diagonal. Because there is a gap between the graphs for �i in the interior

layers and the diagonal, the orientation of the magnetic spin shows rotational hysteresis in

all layers (except the top one). But this hysteresis is caused by a full-length transition of

the chain of magnetic spins, rather than the partial-range transition that was responsible

for the hysteresis below Hc3.

As Ha increases beyond Hc3, the jumps in Fig. 13 move closer to the nearest multiple

of �, but the general pattern persists.
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3.3 Comparison with Experiment

Quantities such as the magnetic moment are fundamental to describe the state of the system,

but they are not directly measurable in an experiment. Measurable quantities are the

magnetization angle (or apparent angle), �, and the torque density, T . The magnetization

angle is associated with the vector sum of the in-plane components of the magnetic moments,

� = tan�1
P

i2I Mi;yP
i2I Mi;x

= tan�1
P

i2I Mi sin �iP
i2I Mi cos �i

: (3.4)

The torque density T (erg/cm2) is de�ned by the expression

T = Had
X
i2I

Mi sin(�a � �i); (3.5)

it is the normal component of the vector T ,

T = d
X
i2I

(M i �Ha) = Had
X
i2I

Mi(mi � ha): (3.6)

In Fig. 14, we compare results for the magnetization angle with experimental data. The

data were obtained by magneto-optical means for a bilayer consisting of Nh = 100 atomic

layers of Sm-Co and Ns = 250 atomic layers of Fe; the simulation curves also refer to this

con�guration [11]. The measurements were done at relatively low �elds (Ha = 360; 600,

and 840 oersteds) and for a limited range of directions (�a = 0 : 10 : 230 degrees).

0 90 180 270 360

−180

−90

0

90

180

In−plane angle of applied field, θ
a
 (degrees)

M
ag

ne
tiz

at
io

n 
an

gl
e,

 α
 (

de
gr

ee
s)

(a) (b) (c) 

Figure 14: Magnetization angle; (a) Ha = 360 (o), (b) Ha = 600 (+), and (c) Ha = 840

(�) oersteds.
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There is certainly qualitative agreement, but the simulations generally yield wider

hysteresis loops than the experiments. In fact, the discrepancy becomes greater as the �eld

strength increases. This behavior can be explained by the fact that the model used in the

simulations is a single-domain model, which does not allow for the important phenomenon of

nucleation and motion of nanodomains. As a result, the demagnetization energy is seriously

overestimated. In realistic simulations, one must use multidimensional models and allow

for lateral inhomogeneities [11].

For completeness, we also give the computational results for the magnetization angle

and torque density for the standard con�guration considered in the preceding sections; see

Figs. 15 and 16.
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Figure 15: Hysteresis loops of the magnetization angle. Left: (a) Ha = 1000, (b) Ha =

3000, (c) Ha = 5000, (d) Ha = 6797 oersteds. Center: (a) Ha = 6799, (b) Ha = 8000,

(c) Ha = 9200, (d) Ha = 10; 200 oersteds. Right: Ha = 10; 400 oersteds.
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Figure 16: Hysteresis loops of the torque density. Left: (a) Ha = 1000, (b) Ha = 3000,

(c) Ha = 5000, (d) Ha = 6797 oersteds. Center: (a) Ha = 6799, (b) Ha = 8000, (c) Ha =

9200, (d) Ha = 10; 200 oersteds. Right: Ha = 10; 400 oersteds.

Both the magnetization angle and the torque density reect the behavior of the mag-
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netic moments. Their hysteresis loops expand between Hc1 and Hc2, show a discontinuity

at Ha = Hc2, contract between Hc2 and Hc3, and show period doubling beyond Hc3.

Notice that the graph of the apparent angle appears to develop cusps near the discon-

tinuities when Ha is below Hc2 (Fig. 15, left, curve (c)). In fact, at Ha = 4800 oersteds

(not shown), the value of � exceeds the value of �a at the last data point (� = 306:9 at

�a = 301:5 degrees). The origin of this anomaly is to be found in the de�nition of the appar-

ent angle. Once the spins in the soft layers rotate beyond 180 degrees, their contribution to

the vector sum in Eq. (3.4) changes sign. As a result, the magnetization angle may overtake

�a.

Experimental torque measurements at comparable values of Ha show similarly shaped

graphs, with extrema at approximately the same values of �a, but signi�cantly narrower

hysteresis loops [10].

3.4 Energy Density

It is interesting to see how the energy density of the equilibrium spin con�guration depends

on �a and how this dependence varies with Ha.

Figure 17 summarizes the results of the simulations, again for the standard con�gura-

tion considered in the preceding sections. (The vertical scales vary from one sub�gure to

the next.) The graph is smooth as Ha increases from 0. It develops a cusp at �a = � as Ha

approaches Hc1 (Fig. 17, top left). The cusp develops into a discontinuity, which shifts to

increasing values of �a and becomes more pronounced as Ha increases beyond Hc1 to Hc2

(Fig. 17, top right). The discontinuity shifts back and diminishes as Ha increases beyond

Hc2, until it disappears entirely when Ha reaches the value Hc3 (Fig. 17, bottom left). At

Ha = Hc3, a new equilibrium state with a signi�cantly lower energy density, namely the

state where the spin in both the hard and the soft layers is ipped by 180 degrees, becomes

accessible, and the energy density curve becomes smooth on the two halves of the interval,

with a peak exactly at �a = � (Fig. 17, bottom right).

A contour plot of the energy surface is given in Fig. 18. One recognizes the outline of

the curve of critical values �c of Fig. 5.

3.5 Determination of Hc3

The exact determination of Hc3 is delicate. If Ha is already above Hc3, but the increment in

�a is taken too large, the con�guration of the magnetic spins may show the same qualitative

behavior as when Ha is below Hc3. The spin in the hard layers stays �xed in the positive x

direction, there is a critical value �c of �a where the chirality of the chain of spins changes
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Figure 17: Total energy density at equilibrium. Top left: (a) Ha = 200, (b) Ha = 400,

(c) Ha = 600, (d) Ha = 800 oersteds. Top right: (a) Ha = 1000, (b) Ha = 3000, (c) Ha =

5000, (d) Ha = 6797 oersteds. Bottom left: (a) Ha = 6799, (b) Ha = 8000, (c) Ha = 9200,

(d) Ha = 10; 200 oersteds. Bottom right: (a) Ha = 10; 200, (b) Ha = 10; 400 oersteds.

from positive to negative, and the system continues to show hysteretic behavior. The

qualitative change in the con�guration of the magnetic spins at Ha = Hc3 described above

and illustrated in Fig. 11 becomes apparent only if the increment in �a is su�ciently small,

and even more so as Ha gets closer to Hc3. Figure 19 shows some hysteresis loops for �N ,

�, and T , which were obtained for three values Ha, each greater than Hc3, with 5-, 10-, and

20-degree increments of �a, respectively. (The increasing increment explains the increasing

slope of the hysteresis loops.) The total equilibrium energy density of these states (not

shown) follows the pattern of the curve (a) in Fig. 17, bottom right.

In the neighborhood of Hc3, the rotational hysteresis phenomenon is apparently rate

dependent: it is possible to reach di�erent states by choosing di�erent increments of �a.

Table 2 illustrates this point. Here, Ha = 10; 400 oersteds, which is just above the critical
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Figure 18: Contour plot of the total equilibrium energy density as a function of Ha (vertical

axis) and �a (horizontal axis).
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Figure 19: \Rotational hysteresis" above Hc3; (a) Ha = 10; 300, (b) Ha = 11; 000, (c) Ha =

11; 900 oersteds. Left: in-plane angle �N (top layer); center: magnetization angle �; right:

torque density T .

value Hc3. We determined with a 0.1 degree increment that the spin in the hard layers

changes direction when �a is between 195.5 and 195.6 degrees; the energy drops from 60.048

to 2.159 erg/cm2. The same state is reached when the increment is 1 degree and �a is

increased from 195 to 196 degrees. But when the increment is 5 degrees and �a is increased

from 195 to 200 degrees, we continue to see rotational hysteresis, and the energy drops only

a fraction to 49.397 erg/cm2.
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Table 2: Total equilibrium energy density E (erg/cm2); Ha = 10; 400 oersteds; increments

��a = 0:5; 1, and 5 degrees.

�a 190.0 194.0 194.5 195.0 195.5 196.0 196.5 197.0 197.5 198.0 200.0

E 58.707 59.701 59.819 59.935 60.048 2.194 2.238 2.284 2.312 2.381 2.590

E 58.708 59.701 { 59.935 { 2.194 { 2.285 2.381 2.590
E 58.711 { { 59.935 { { { { { { 49.397

4 Conclusions

In this report we have addressed the important issue of magnetization reversal in layered

spring magnets. We have used a one-dimensional model of a �lm consisting of atomic layers

of a soft material on top of atomic layers of a hard material, with strong coupling at the

interface, assuming no variation in the lateral directions. The state of such a system is

described by a chain of magnetic spin vectors. Each spin vector behaves like a spinning top

driven by the local magnetic �eld and subject to damping. The dynamics are described

by a system of LLG equations, Eq. (2.5), coupled with a variational equation for the mag-

netic �eld, Eq. (2.6). The numerical algorithm for the integration of the LLG equations,

Eq. (2.30), preserves the magnitude of the magnetization vector at all times.

The results of numerical simulations show that a layered spring magnet exhibits rota-

tional hysteresis with a basic period of 360 degrees at moderately strong �elds and rotational

hysteresis with a basic period of 180 degrees at strong �elds. The former type of hysteresis

is induced by a partial-length transition of the chain of magnetic spins; the transition occurs

only in the soft material and causes a change of chirality. The hysteresis in strong �elds is

induced by a full-length transition of the chain of spins in both the hard and the soft layers;

it is much weaker than the rotational hysteresis at moderately weak �elds and can cover

any period that is a multiple of the base period.

The numerical results for the torque and magnetization angle agree qualitatively with

the experimental data but di�er at the quantitative level. In particular, the one-dimensional

model seriously overestimates the demagnetization energy, since it does not allow for the

nucleation and motion of nanodomains. In realistic simulations, lateral inhomogeneities

must be taken into account.
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